Math HTML symbols

Html entities list

Plus Sign + + + U+0002B \02B +
Minus Sign − − U+02212 \2212 −
Multiplication Sign × × × U+000D7 \0D7 ×
Division Sign ÷ ÷ ÷ U+000F7 \0F7 ÷
Equal Sign = = = U+0003D \03D =
Not Equal To Sign ≠ ≠ U+02260 \2260 ≠
Plus or Minus Sign ± ± ± U+000B1 \0B1 ±
Not Sign ¬ ¬ ¬ U+000AC \0AC ¬
Less-Than Sign < &lt; &#60; U+0003C \03C &#x3c;
Greater-Than Sign > &gt; &#62; U+0003E \03E &#x3e;
Equal to or Less-Than Sign & &#8924; U+022DC \22DC &#x22DC;
Equal to or Greater-Than Sign & &#8925; U+022DD \22DD &#x22DD;
Degree Sign ° &deg; &#176; U+000B0 \0B0 &#xb0;
Superscript One ¹ &sup1; &#185; U+000B9 \0B9 &#xb9;
Superscript Two ² &sup2; &#178; U+000B2 \0B2 &#xb2;
Superscript Three ³ &sup3; &#179; U+000B3 \0B3 &#xb3;
Function ƒ &fnof; &#402; U+00192 \192 &#x192;
Percent Sign % &percnt; &#37; U+00025 \025 &#x25;
Per Mille Sign &permil; &#137; U+00089 \089 &#x89;
Per Ten Thousand Sign &pertenk; &#8241; U+02031 \2031 &#x2031;
For All &forall; &#8704; U+02200 \2200 &#x2200;
Complement &comp; &#8705; U+02201 \2201 &#x2201;
Partial Differential &part; &#8706; U+02202 \2202 &#x2202;
There Exists &exist; &#8707; U+02203 \2203 &#x2203;
There Does Not Exist &nexist; &#8708; U+02204 \2204 &#x2204;
Empty Set &empty; &#8709; U+02205 \2205 &#x2205;
Increment & &#8710; U+02206 \2206 &#x2206;
Nabla &nabla; &#8711; U+02207 \2207 &#x2207;
Element Of &isin; &#8712; U+02208 \2208 &#x2208;
Not an Element Of &notin; &#8713; U+02209 \2209 &#x2209;
Small Element Of & &#8714; U+0220A \220A &#x220A;
Contains as Member &ni; &#8715; U+0220B \220B &#x220B;
Does Not Contain as Member &notni; &#8716; U+0220C \220C &#x220C;
Small Contains as Member & &#8717; U+0220D \220D &#x220D;
End of Proof & &#8718; U+0220E \220E &#x220E;
N-Ary Product &prod; &#8719; U+0220F \220F &#x220F;
N-Ary Coproduct &coprod; &#8720; U+02210 \2210 &#x2210;
N-Ary Summation &sum; &#8721; U+02211 \2211 &#x2211;
Minus-or-Plus Sign &mnplus; &#8723; U+02213 \2213 &#x2213;
Dot Plus &plusdo; &#8724; U+02214 \2214 &#x2214;
Division Slash & &#8725; U+02215 \2215 &#x2215;
Set Minus &setminus; &#8726; U+02216 \2216 &#x2216;
Asterisk Operator &lowast; &#8727; U+02217 \2217 &#x2217;
Ring Operator &compfn; &#8728; U+02218 \2218 &#x2218;
Bullet Operator & &#8729; U+02219 \2219 &#x2219;
Square Root &radic; &#8730; U+0221A \221A &#x221A;
Cube Root & &#8731; U+0221B \221B &#x221B;
Fourth Root & &#8732; U+0221C \221C &#x221C;
Proportional To &prop; &#8733; U+0221D \221D &#x221D;
Infinity &infin; &#8734; U+0221E \221E &#x221E;
Right Angle &angrt; &#8735; U+0221F \221F &#x221F;
Angle &ang; &#8736; U+02220 \2220 &#x2220;
Measured Angle &angmsd; &#8737; U+02221 \2221 &#x2221;
Spherical Angle &angsph; &#8738; U+02222 \2222 &#x2222;
Divides &mid; &#8739; U+02223 \2223 &#x2223;
Does Not Divide &nmid; &#8740; U+02224 \2224 &#x2224;
Parallel To &parallel; &#8741; U+02225 \2225 &#x2225;
Not Parallel To &npar; &#8742; U+02226 \2226 &#x2226;
Logical And &and; &#8743; U+02227 \2227 &#x2227;
Logical Or &or; &#8744; U+02228 \2228 &#x2228;
Intersection &cap; &#8745; U+02229 \2229 &#x2229;
Union &cup; &#8746; U+0222A \222A &#x222A;
Integral &int; &#8747; U+0222B \222B &#x222B;
Double Integral &Int; &#8748; U+0222C \222C &#x222C;
Triple Integral &iiint; &#8749; U+0222D \222D &#x222D;
Contour Integral &conint; &#8750; U+0222E \222E &#x222E;
Surface Integral &Conint; &#8751; U+0222F \222F &#x222F;
Volume Integral &Cconint; &#8752; U+02230 \2230 &#x2230;
Clockwise Integral &cwint; &#8753; U+02231 \2231 &#x2231;
Clockwise Contour Integral &cwconint; &#8754; U+02232 \2232 &#x2232;
Anticlockwise Contour Integral &awconint; &#8755; U+02233 \2233 &#x2233;
Therefore &there4; &#8756; U+02234 \2234 &#x2234;
Because &because; &#8757; U+02235 \2235 &#x2235;
Ratio &ratio; &#8758; U+02236 \2236 &#x2236;
Proportion &Colon; &#8759; U+02237 \2237 &#x2237;
Dot Minus &minusd; &#8760; U+02238 \2238 &#x2238;
Excess & &#8761; U+02239 \2239 &#x2239;
Geometric Proportion &mDDot; &#8762; U+0223A \223A &#x223A;
Homothetic &homtht; &#8763; U+0223B \223B &#x223B;
Tilde Operator &sim; &#8764; U+0223C \223C &#x223C;
Reversed Tilde &bsim; &#8765; U+0223D \223D &#x223D;
Inverted Lazy S &ac; &#8766; U+0223E \223E &#x223E;
Sine Wave &acd; &#8767; U+0223F \223F &#x223F;
Wreath Product &wreath; &#8768; U+02240 \2240 &#x2240;
Not Tilde &nsim; &#8769; U+02241 \2241 &#x2241;
Minus Tilde &esim; &#8770; U+02242 \2242 &#x2242;
Asymptotically Equal To &sime; &#8771; U+02243 \2243 &#x2243;
Not Asymptotically Equal To &nsime; &#8772; U+02244 \2244 &#x2244;
Approximately Equal To &cong; &#8773; U+02245 \2245 &#x2245;
Approximately but Not Actually Equal To &simne; &#8774; U+02246 \2246 &#x2246;
Neither Approximately Nor Actually Equal To &ncong; &#8775; U+02247 \2247 &#x2247;
Almost Equal To &asymp; &#8776; U+02248 \2248 &#x2248;
Not Almost Equal To &nap; &#8777; U+02249 \2249 &#x2249;
Almost Equal or Equal To &approxeq; &#8778; U+0224A \224A &#x224A;
Triple Tilde &apid; &#8779; U+0224B \224B &#x224B;
All Equal To &bcong; &#8780; U+0224C \224C &#x224C;
Equivalent To &asympeq; &#8781; U+0224D \224D &#x224D;
Geometrically Equivalent To &bump; &#8782; U+0224E \224E &#x224E;
Difference Between &bumpe; &#8783; U+0224F \224F &#x224F;
Approaches the Limit &esdot; &#8784; U+02250 \2250 &#x2250;
Geometrically Equal To &eDot; &#8785; U+02251 \2251 &#x2251;
Approximately Equal to or the Image Of &efDot; &#8786; U+02252 \2252 &#x2252;
Image of or Approximately Equal To &erDot; &#8787; U+02253 \2253 &#x2253;
Colon Equals &colone; &#8788; U+02254 \2254 &#x2254;
Equals Colon &ecolon; &#8789; U+02255 \2255 &#x2255;
Ring in Equal To &ecir; &#8790; U+02256 \2256 &#x2256;
Ring Equal To &cire; &#8791; U+02257 \2257 &#x2257;
Corresponds To & &#8792; U+02258 \2258 &#x2258;
Estimates &wedgeq; &#8793; U+02259 \2259 &#x2259;
Equiangular To &veeeq; &#8794; U+0225A \225A &#x225A;
Star Equals & &#8795; U+0225B \225B &#x225B;
Delta Equal To &trie; &#8796; U+0225C \225C &#x225C;
Equal to by Definition & &#8797; U+0225D \225D &#x225D;
Measured By & &#8798; U+0225E \225E &#x225E;
Questioned Equal To &equest; &#8799; U+0225F \225F &#x225F;
Identical To &equiv; &#8801; U+02261 \2261 &#x2261;
Not Identical To &nequiv; &#8802; U+02262 \2262 &#x2262;
Strictly Equivalent To & &#8803; U+02263 \2263 &#x2263;
Less-Than or Equal To &le; &#8804; U+02264 \2264 &#x2264;
Greater-Than or Equal To &ge; &#8805; U+02265 \2265 &#x2265;
Less-Than Over Equal To &lE; &#8806; U+02266 \2266 &#x2266;
Greater-Than Over Equal To &gE; &#8807; U+02267 \2267 &#x2267;
Less-Than but Not Equal To &lnE; &#8808; U+02268 \2268 &#x2268;
Greater-Than but Not Equal To &gnE; &#8809; U+02269 \2269 &#x2269;
Much Less-Than &Lt; &#8810; U+0226A \226A &#x226A;
Much Greater-Than &Gt; &#8811; U+0226B \226B &#x226B;
Between &between; &#8812; U+0226C \226C &#x226C;
Not Equivalent To &NotCupCap; &#8813; U+0226D \226D &#x226D;
Not Less-Than &nlt; &#8814; U+0226E \226E &#x226E;
Not Greater-Than &ngt; &#8815; U+0226F \226F &#x226F;
Neither Less-Than Nor Equal To &nle; &#8816; U+02270 \2270 &#x2270;
Neither Greater-Than Nor Equal To &nge; &#8817; U+02271 \2271 &#x2271;
Less-Than or Equivalent To &lsim; &#8818; U+02272 \2272 &#x2272;
Greater-Than or Equivalent To &gsim; &#8819; U+02273 \2273 &#x2273;
Neither Less-Than Nor Equivalent To &nlsim; &#8820; U+02274 \2274 &#x2274;
Neither Greater-Than Nor Equivalent To &ngsim; &#8821; U+02275 \2275 &#x2275;
Less-Than or Greater-Than &lg; &#8822; U+02276 \2276 &#x2276;
Greater-Than or Less-Than &gl; &#8823; U+02277 \2277 &#x2277;
Neither Less-Than Nor Greater-Than &ntlg; &#8824; U+02278 \2278 &#x2278;
Neither Greater-Than Nor Less-Than &ntgl; &#8825; U+02279 \2279 &#x2279;
Precedes &pr; &#8826; U+0227A \227A &#x227A;
Succeeds &sc; &#8827; U+0227B \227B &#x227B;
Precedes or Equal To &prcue; &#8828; U+0227C \227C &#x227C;
Succeeds or Equal To &sccue; &#8829; U+0227D \227D &#x227D;
Precedes or Equivalent To &prsim; &#8830; U+0227E \227E &#x227E;
Succeeds or Equivalent To &scsim; &#8831; U+0227F \227F &#x227F;
Does Not Precede &npr; &#8832; U+02280 \2280 &#x2280;
Does Not Succeed &nsc; &#8833; U+02281 \2281 &#x2281;
Subset Of &sub; &#8834; U+02282 \2282 &#x2282;
Superset Of &sup; &#8835; U+02283 \2283 &#x2283;
Not a Subset Of &nsub; &#8836; U+02284 \2284 &#x2284;
Not a Superset Of &nsup; &#8837; U+02285 \2285 &#x2285;
Subset of or Equal To &sube; &#8838; U+02286 \2286 &#x2286;
Superset of or Equal To &supe; &#8839; U+02287 \2287 &#x2287;
Neither a Subset of Nor Equal To &nsube; &#8840; U+02288 \2288 &#x2288;
Neither a Superset of Nor Equal To &nsupe; &#8841; U+02289 \2289 &#x2289;
Subset of With Not Equal To &subne; &#8842; U+0228A \228A &#x228A;
Superset of With Not Equal To &supne; &#8843; U+0228B \228B &#x228B;
Multiset & &#8844; U+0228C \228C &#x228C;
Multiset Multiplication &cupdot; &#8845; U+0228D \228D &#x228D;
Multiset Union &uplus; &#8846; U+0228E \228E &#x228E;
Square Image Of &sqsub; &#8847; U+0228F \228F &#x228F;
Square Original Of &sqsup; &#8848; U+02290 \2290 &#x2290;
Square Image of or Equal To &sqsube; &#8849; U+02291 \2291 &#x2291;
Square Original of or Equal To &sqsupe; &#8850; U+02292 \2292 &#x2292;
Square Cap &sqcap; &#8851; U+02293 \2293 &#x2293;
Square Cup &sqcup; &#8852; U+02294 \2294 &#x2294;
Circled Plus &oplus; &#8853; U+02295 \2295 &#x2295;
Circled Minus &ominus; &#8854; U+02296 \2296 &#x2296;
Circled Times &otimes; &#8855; U+02297 \2297 &#x2297;
Circled Division Slash &osol; &#8856; U+02298 \2298 &#x2298;
Circled Dot Operator &odot; &#8857; U+02299 \2299 &#x2299;
Circled Ring Operator &ocir; &#8858; U+0229A \229A &#x229A;
Circled Asterisk Operator &oast; &#8859; U+0229B \229B &#x229B;
Circled Equals & &#8860; U+0229C \229C &#x229C;
Circled Dash &odash; &#8861; U+0229D \229D &#x229D;
Squared Plus &plusb; &#8862; U+0229E \229E &#x229E;
Squared Minus &minusb; &#8863; U+0229F \229F &#x229F;
Squared Times &timesb; &#8864; U+022A0 \22A0 &#x22A0;
Squared Dot Operator &sdotb; &#8865; U+022A1 \22A1 &#x22A1;
Right Tack &vdash; &#8866; U+022A2 \22A2 &#x22A2;
Left Tack &dashv; &#8867; U+022A3 \22A3 &#x22A3;
Down Tack &top; &#8868; U+022A4 \22A4 &#x22A4;
Up Tack &perp; &#8869; U+022A5 \22A5 &#x22A5;
Assertion & &#8870; U+022A6 \22A6 &#x22A6;
Models &models; &#8871; U+022A7 \22A7 &#x22A7;
True &vDash; &#8872; U+022A8 \22A8 &#x22A8;
Forces &Vdash; &#8873; U+022A9 \22A9 &#x22A9;
Triple Vertical Bar Right Turnstile &Vvdash; &#8874; U+022AA \22AA &#x22AA;
Double Vertical Bar Double Right Turnstile &VDash; &#8875; U+022AB \22AB &#x22AB;
Does Not Prove &nvdash; &#8876; U+022AC \22AC &#x22AC;
Not True &nvDash; &#8877; U+022AD \22AD &#x22AD;
Does Not Force &nVdash; &#8878; U+022AE \22AE &#x22AE;
Negated Double Vertical Bar Double Right Turnstile &nVDash; &#8879; U+022AF \22AF &#x22AF;
Precedes Under Relation &prurel; &#8880; U+022B0 \22B0 &#x22B0;
Succeeds Under Relation & &#8881; U+022B1 \22B1 &#x22B1;
Normal Subgroup Of &vltri; &#8882; U+022B2 \22B2 &#x22B2;
Contains as Normal Subgroup &vrtri; &#8883; U+022B3 \22B3 &#x22B3;
Normal Subgroup of or Equal To &ltrie; &#8884; U+022B4 \22B4 &#x22B4;
Contains as Normal Subgroup or Equal To &rtrie; &#8885; U+022B5 \22B5 &#x22B5;
Original Of &origof; &#8886; U+022B6 \22B6 &#x22B6;
Image Of &imof; &#8887; U+022B7 \22B7 &#x22B7;
Multimap &mumap; &#8888; U+022B8 \22B8 &#x22B8;
Hermitian Conjugate Matrix &hercon; &#8889; U+022B9 \22B9 &#x22B9;
Intercalate &intcal; &#8890; U+022BA \22BA &#x22BA;
Xor &veebar; &#8891; U+022BB \22BB &#x22BB;
Nand & &#8892; U+022BC \22BC &#x22BC;
Nor &barvee; &#8893; U+022BD \22BD &#x22BD;
Right Angle With Arc &angrtvb; &#8894; U+022BE \22BE &#x22BE;
Right Triangle &lrtri; &#8895; U+022BF \22BF &#x22BF;
N-Ary Logical And &xwedge; &#8896; U+022C0 \22C0 &#x22C0;
N-Ary Logical Or &xvee; &#8897; U+022C1 \22C1 &#x22C1;
N-Ary Intersection &xcap; &#8898; U+022C2 \22C2 &#x22C2;
N-Ary Union &xcup; &#8899; U+022C3 \22C3 &#x22C3;
Diamond Operator &diamond; &#8900; U+022C4 \22C4 &#x22C4;
Dot Operator &sdot; &#8901; U+022C5 \22C5 &#x22C5;
Star Operator &Star; &#8902; U+022C6 \22C6 &#x22C6;
Division Times &divonx; &#8903; U+022C7 \22C7 &#x22C7;
Bowtie &bowtie; &#8904; U+022C8 \22C8 &#x22C8;
Left Normal Factor Semidirect Product &ltimes; &#8905; U+022C9 \22C9 &#x22C9;
Right Normal Factor Semidirect Product &rtimes; &#8906; U+022CA \22CA &#x22CA;
Left Semidirect Product &lthree; &#8907; U+022CB \22CB &#x22CB;
Right Semidirect Product &rthree; &#8908; U+022CC \22CC &#x22CC;
Reversed Tilde Equals &bsime; &#8909; U+022CD \22CD &#x22CD;
Curly Logical Or &cuvee; &#8910; U+022CE \22CE &#x22CE;
Curly Logical And &cuwed; &#8911; U+022CF \22CF &#x22CF;
Double Subset &Sub; &#8912; U+022D0 \22D0 &#x22D0;
Double Superset &Sup; &#8913; U+022D1 \22D1 &#x22D1;
Double Intersection &Cap; &#8914; U+022D2 \22D2 &#x22D2;
Double Union &Cup; &#8915; U+022D3 \22D3 &#x22D3;
Pitchfork &fork; &#8916; U+022D4 \22D4 &#x22D4;
Equal and Parallel To &epar; &#8917; U+022D5 \22D5 &#x22D5;
Less-Than With Dot &ltdot; &#8918; U+022D6 \22D6 &#x22D6;
Greater-Than With Dot &gtdot; &#8919; U+022D7 \22D7 &#x22D7;
Very Much Less-Than &Ll; &#8920; U+022D8 \22D8 &#x22D8;
Very Much Greater-Than &Gg; &#8921; U+022D9 \22D9 &#x22D9;
Less-Than Equal to or Greater-Than &leg; &#8922; U+022DA \22DA &#x22DA;
Greater-Than Equal to or Less-Than &gel; &#8923; U+022DB \22DB &#x22DB;
Equal to or Precedes &cuepr; &#8926; U+022DE \22DE &#x22DE;
Equal to or Succeeds &cuesc; &#8927; U+022DF \22DF &#x22DF;
Does Not Precede or Equal &nprcue; &#8928; U+022E0 \22E0 &#x22E0;
Does Not Succeed or Equal &nsccue; &#8929; U+022E1 \22E1 &#x22E1;
Not Square Image of or Equal To &nsqsube; &#8930; U+022E2 \22E2 &#x22E2;
Not Square Original of or Equal To &nsqsupe; &#8931; U+022E3 \22E3 &#x22E3;
Square Image of or Not Equal To & &#8932; U+022E4 \22E4 &#x22E4;
Square Original of or Not Equal To & &#8933; U+022E5 \22E5 &#x22E5;
Less-Than but Not Equivalent To &lnsim; &#8934; U+022E6 \22E6 &#x22E6;
Greater-Than but Not Equivalent To &gnsim; &#8935; U+022E7 \22E7 &#x22E7;
Precedes but Not Equivalent To &prnsim; &#8936; U+022E8 \22E8 &#x22E8;
Succeeds but Not Equivalent To &scnsim; &#8937; U+022E9 \22E9 &#x22E9;
Not Normal Subgroup Of &nltri; &#8938; U+022EA \22EA &#x22EA;
Does Not Contain as Normal Subgroup &nrtri; &#8939; U+022EB \22EB &#x22EB;
Not Normal Subgroup of or Equal To &nltrie; &#8940; U+022EC \22EC &#x22EC;
Does Not Contain as Normal Subgroup or Equal &nrtrie; &#8941; U+022ED \22ED &#x22ED;
Vertical Ellipsis &vellip; &#8942; U+022EE \22EE &#x22EE;
Midline Horizontal Ellipsis &ctdot; &#8943; U+022EF \22EF &#x22EF;
Up Right Diagonal Ellipsis &utdot; &#8944; U+022F0 \22F0 &#x22F0;
Down Right Diagonal Ellipsis &dtdot; &#8945; U+022F1 \22F1 &#x22F1;
Element of With Long Horizontal Stroke &disin; &#8946; U+022F2 \22F2 &#x22F2;
Element of With Vertical Bar at End of Horizontal Stroke &isinsv; &#8947; U+022F3 \22F3 &#x22F3;
Small Element of With Vertical Bar at End of Horizontal Stroke &isins; &#8948; U+022F4 \22F4 &#x22F4;
Element of With Dot Above &isindot; &#8949; U+022F5 \22F5 &#x22F5;
Element of With Overbar &notinvc; &#8950; U+022F6 \22F6 &#x22F6;
Small Element of With Overbar &notinvb; &#8951; U+022F7 \22F7 &#x22F7;
Element of With Underbar & &#8952; U+022F8 \22F8 &#x22F8;
Element of With Two Horizontal Strokes &isinE; &#8953; U+022F9 \22F9 &#x22F9;
Contains With Long Horizontal Stroke &nisd; &#8954; U+022FA \22FA &#x22FA;
Contains With Vertical Bar at End of Horizontal Stroke &xnis; &#8955; U+022FB \22FB &#x22FB;
Small Contains With Vertical Bar at End of Horizontal Stroke &nis; &#8956; U+022FC \22FC &#x22FC;
Contains With Overbar &notnivc; &#8957; U+022FD \22FD &#x22FD;
Small Contains With Overbar &notnivb; &#8958; U+022FE \22FE &#x22FE;
Z Notation Bag Membership & &#8959; U+022FF \22FF &#x22FF;
Superscript Zero & &#8304; U+02070 \2070 &#x2070;
Superscript Latin Small Letter I & &#8305; U+02071 \2071 &#x2071;
Superscript Four & &#8308; U+02074 \2074 &#x2074;
Superscript Five & &#8309; U+02075 \2075 &#x2075;
Superscript Six & &#8310; U+02076 \2076 &#x2076;
Superscript Seven & &#8311; U+02077 \2077 &#x2077;
Superscript Eight & &#8312; U+02078 \2078 &#x2078;
Superscript Nine & &#8313; U+02079 \2079 &#x2079;
Superscript Plus Sign & &#8314; U+0207A \207A &#x207A;
Superscript Minus & &#8315; U+0207B \207B &#x207B;
Superscript Equals Sign & &#8316; U+0207C \207C &#x207C;
Superscript Left Parenthesis & &#8317; U+0207D \207D &#x207D;
Superscript Right Parenthesis & &#8318; U+0207E \207E &#x207E;
Superscript Latin Small Letter N & &#8319; U+0207F \207F &#x207F;
Subscript Zero & &#8320; U+02080 \2080 &#x2080;
Subscript One & &#8321; U+02081 \2081 &#x2081;
Subscript Two & &#8322; U+02082 \2082 &#x2082;
Subscript Three & &#8323; U+02083 \2083 &#x2083;
Subscript Four & &#8324; U+02084 \2084 &#x2084;
Subscript Five & &#8325; U+02085 \2085 &#x2085;
Subscript Six & &#8326; U+02086 \2086 &#x2086;
Subscript Seven & &#8327; U+02087 \2087 &#x2087;
Subscript Eight & &#8328; U+02088 \2088 &#x2088;
Subscript Nine & &#8329; U+02089 \2089 &#x2089;
Subscript Plus Sign & &#8330; U+0208A \208A &#x208A;
Subscript Minus & &#8331; U+0208B \208B &#x208B;
Subscript Equals Sign & &#8332; U+0208C \208C &#x208C;
Subscript Left Parenthesis & &#8333; U+0208D \208D &#x208D;
Subscript Right Parenthesis & &#8334; U+0208E \208E &#x208E;
Latin Subscript Small Letter A & &#8336; U+02090 \2090 &#x2090;
Latin Subscript Small Letter E & &#8337; U+02091 \2091 &#x2091;
Latin Subscript Small Letter O & &#8338; U+02092 \2092 &#x2092;
Latin Subscript Small Letter X & &#8339; U+02093 \2093 &#x2093;
Latin Subscript Small Letter Schwa & &#8340; U+02094 \2094 &#x2094;